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A B S T R A C T   

Without taking additional measures, flooding is becoming more likely and intense in a changing 
climate, which causes large economic damage. Households and firms are directly impacted by 
physical flood damage, but further ripple effects on society occur through business disruptions. By 
using post-disaster survey data from the 2021 flood event in the Netherlands, this study adds to 
the literature on business interruption duration and losses after flooding. The current empirical 
literature on flood impacts on firms is often unable to distinguish separate effects for flooded and 
non-flooded firms and does not incorporate flood severity and the influence of risk reduction 
measures. Here, we use multivariate regression models to determine depth-duration functions 
that describe the relationship between flood hazard characteristics and business interruption 
duration. This relationship can be used to calibrate flood damage models that capture indirect 
firm impacts. The prediction of business interruption after flooding allows for differentiation in 
business interruption between firms within a flooded area, reducing the reliance of these mac-
roeconomic models on restrictive assumptions. Our results indicate that a day of business inter-
ruption duration costs a firm on average 0.5 % of their annual revenue; an effect that is stronger 
for firms with a weaker connection to their region. Flood damage mitigation (FDM) measures 
taken at the building level do not significantly affect business interruption duration, although 
further research on this is required. Finally, quick damage compensation is found to reduce 
business interruption duration and thus revenue losses, calling for higher insurance uptake and 
rapid and streamlined post-disaster insurance and government compensation.   

1. Introduction 

In a changing climate, the intensity and frequency of natural disasters will likely increase [1]. Flooding is the costliest among 
natural disasters, causing over €70 billion of economic losses globally in 2021 alone [2]. Floods directly impact households and 
companies through the destruction of their assets [3]. Further indirect ripple effects for society occur due to infrastructure destruction 
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and interruption of business processes and financial markets [4,5]. It is expected that business interruption losses1 exceed direct flood 
damage to companies, but little research has been conducted on this topic [6,7]. Understanding the impact of floods on firms is 
essential for effective disaster risk management. 

Business interruption is a major driver of post-disaster revenue losses [8]. Current literature that assesses the effect of flood-induced 
business interruption on firms is dominated by Input-Output (IO) and Computable General Equilibrium (CGE) models [9]. These 
models heavily rely on assumptions on business interruption duration and recovery paths, with little empirical evidence for recovery 
processes, which in turn increases uncertainty in their estimations [10]. Moreover, these indirect loss models often assume that 
business interruption duration is the same across all firms in the flooded area, regardless of the magnitude of direct flood impacts [10]. 
However, large heterogeneity in business interruption has been observed in the few existing empirical studies [11]. Currently, studies 
that attempt to explain variation in business interruption only focus on pluvial flooding [12] or assess variable importance, but do not 
quantify the exact impact of flooding on recovery time [13]. 

The main objective of this study is to explain the role of flooding on business interruption duration and business interruption losses 
using firm-level survey data from the floods in the Netherlands in the summer of 2021. This is done by applying multivariate regression 
analyses to find the relationship between several detailed hazard and vulnerability indicators and business interruption duration. Next, 
firm-specific business interruption duration is used as an explanatory variable to identify revenue losses in the wake of the flood event. 
A secondary goal is to identify the risk-reducing effect of flood damage mitigation (FDM) measures taken at the firm level. Generally, 
firms take fewer precautionary adaptation measures compared to households [14]. More information on the effectiveness of these 
measures may thus stimulate additional resilience for businesses. To our knowledge, no study has as of yet identified whether FDM 
measures have the potential to reduce business interruption duration. However, the estimation of the impact of adaptation actions is 
prone to a selection bias, as individuals and firms that face higher flood risk are more likely to adapt [15]. To address this bias, our 
study applies propensity score matching (PSM) to compare adapted and non-adapted groups that are similar based on other back-
ground characteristics. This approach is in line with other studies that analyzed the role of FDM measures on residential flood damage 
[16,17]. 

Empirical evidence on the impacts of flooding at the firm level is relatively scarce [18,19]. The available studies find mixed evi-
dence. In the assessment of the firm’s post-disaster capital, labor, and productivity, both Leiter et al. [20] and Zhou & Botzen [19] find 
that flooding stimulates capital and labor growth up to three years after flooding. The same studies find that the firm’s added value 
decreases after a flood event, implying that productivity decreases. Noth and Rehbein [21] find that flooding increases a firm’s 
revenues within two years after flooding using firm-level data from Germany. Disasters allow firms to invest in new capital, which may 
not have been possible prior to the flood event [21]. In contrast, Hu et al. [22] and Pan and Qiu [23] find negative impacts of flooding 
on firm performance. 

Additionally, these aforementioned studies are heterogeneous in the used time scale and spatial extent of the flooded area. Con-
cerning the spatial extent of the flood, Leiter et al. [20], Zhou & Botzen [19], and Noth & Rehbein [21] define a firm as flooded if a 
flood has occurred within a specific region, whereas Hu et al. [22] and Pan and Qiu [23] identify flooding on the city-level. A similarity 
between all these studies is that they do not identify whether a single firm is hit by flood water or not, let alone the severity of flooding. 
Consequently, the effect these studies find is the average impact of being located in a flooded region on a firm’s activities, regardless of 
whether the firm experienced water intrusion or not. This average effect contains both the impact on flooded firms as well as positive 
and negative spillovers to firms that did not experience direct flooding. Negative spillovers are mainly demand-driven, as customers 
may temporarily avoid the flooded area [24]. Positive spillovers can occur due to the substitution of production processes to nearby 
non-affected areas and increased demand for reconstruction. Additionally, these studies also cannot identify differences in flood 
magnitude and firm vulnerability between firms in the flooded area, and thus assume that flood impacts are the same across all firms in 
the flooded area. However, flood hazard characteristics such as inundation depth and flow velocity differ within a flooded region, 
resulting in heterogeneous impacts across firms during the same flood event [11]. 

Studies that do identify whether a firm is flooded, use survey data [11–13,25]. Wijayanti et al. [25] exclusively focus on direct 
physical damage incurred by businesses without examining the associated indirect losses. Yang et al. [12] estimate business inter-
ruption losses using data from pluvial flooding in Japan and identify different business interruption losses at different flood hazard 
levels. Sultana et al. [13] apply machine learning to identify the most important indicators that explain both business interruption and 
business interruption losses. It is found that longer business interruption is associated with higher revenue losses. However, they use 
absolute revenue losses as the outcome variable. Absolute damage numbers reduce the comparability between different firms and 
economic sectors, where there is large heterogeneity in exposed capital and activities. Consequently, this reduces the predictive power 
of their models. Our study addresses this challenge by relating revenue losses to the firm’s annual revenue to get a standardized in-
dicator for flood impacts across firms. 

The remainder of this paper is structured as follows. Section 2 describes the data used in this study, including the case study area, 
the survey, and the operationalization of the variables. This section also gives some descriptive statistics on the firm-level impacts of 
flooding. In Section 3, the statistical methods are outlined. Section 4 presents the results on business interruption duration, the role of 
FDM measures, and business interruption losses. Section 5 discusses the main findings in relation to the existing literature and gives 
pathways for future research. Section 6 concludes and gives policy recommendations. 

1 We refer to business interruption losses as the losses in revenue caused by disruptions in production, consumption, and/or supply chains during 
and after the flood event. The scope of the distributed survey considers losses up until eight months after flooding. 
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2. Data 

2.1. Case study area 

In July 2021, parts of Germany, Belgium, and the Netherlands were affected by flooding due to extreme precipitation over a two- 
day period. This flood event resulted in fatalities, health problems, large economic damages, and business interruption. In the 
Netherlands, most economic damage occurred along the Meuse River, along with its tributaries the Geul, Geleenbeek, and Roer [26]. 
Return periods of peak discharges in these tributaries ranged between 1/100 and 1/1000 years [27]. This study focuses on the part of 
the Netherlands that was affected by this flood event, which is the province of Limburg in particular. It is estimated that approximately 
600 companies and non-profit organizations and 2500 households have experienced flood damage in this area [28]. Dutch insurance 
companies have received around 10,000 damage claims from households and 1250 from companies, where total damage has been 
estimated to range between €400 and €500 million [29]. The flooding in the Netherlands was relatively minor in comparison with the 
same flood event in Germany and Belgium, with €7 billion and €1 billion of economic damage, respectively [30,31]. 

The Dutch flood insurance system differentiates between flooding from different water systems. Dutch insurers cannot insure 
against failure of primary water defense systems (i.e., the sea, the Meuse, Scheldt, Rhine Rivers, and the large lakes),2 because they 
cannot attract sufficient capital to make flood insurance premiums affordable for low-probability high-impact flood events (Dutch 
Association of Insurers, 2018). It is possible to insure against flooding from non-primary rivers, which is often included in the 
homeowner- and contents insurance (Dutch Association of Insurers, 2018). However, a share of the firms affected by the flood was 
insured through stock exchange policies,3 where pluvial flooding is insured and riverine flooding is part of an additional insurance 
package [32]. Many businesses did not purchase this additional package, as they assumed that they would be insured against all types 
of flooding [32]. Insurers considered this particular flood event in the Netherlands as a riverine flood event, which resulted in a share of 
businesses not receiving any insurance compensation. The Dutch government supported some of these firms by partly compensating 
uninsured physical economic damage and revenue losses through the Calamities and Compensation Act4 (CCA) [33]. The CCA usually 
only activates for disasters that cannot be insured, such as the failure of the main water defense systems. Although this insurance 
against this particular type of flooding was possible, the government still decided to partially compensate uninsured firms. 

2.2. Survey 

The goal of the survey is to collect detailed information on individual firm’s physical flood damages, business interruption duration, 
and revenue losses caused by this particular flood event. Companies were also asked about flood characteristics near their location and 
to what extent they had taken FDM measures before flooding. The questionnaires were distributed by postal mail in three different 
waves to small and medium-sized companies. The first wave took place in December 2021 and targeted all 857 firms located in the 
flooded area and areas in which an evacuation order was issued during the flood event. The flooded area has been determined by using 
helicopter images complemented by flood simulation models for the Meuse Rivers and its tributaries Geul, Roer, and Geleenbeek [28]. 
The evacuation areas have been sampled to reach more affected firms, as there may have been some inaccuracies in the determined 
flood extent. The second wave started in February 2022, when a reminder was sent to the firms that did not complete the question-
naire. To account for potential inaccuracies in the originally determined flood extent and evacuation order area, the third wave 
sampled 606 firms in addition to the 857 firms that were already contacted for the survey. These 606 additional businesses were 
located in the same postal code area as households that experienced flood damage in the household survey of Endendijk et al. [26]. 
This means that all firms in the sample are either flooded or a near-miss, which makes them relevant to include in this study. Near-miss 
firms may also experience indirect losses, for example through supply chain and accessibility disruptions [3]. 

These three waves eventually resulted in a total response of 215 companies (response rate of 15 %). 42 % of all surveyed firms are 
located near the Meuse River and 18 % along the Geul River. For 33 % of all companies, the geographical location is unknown, as 
respondents were given the option to refuse to share their addresses. The remainder of the respondents (7 %) were located along the 
Geleenbeek or Roer. 83 (39 %) of 215 respondents experienced water intrusion to their assets and 33 % of the total sample experienced 
physical flood damage. 60 % of all surveyed firms experienced business interruption, which indicates that business interruption even 
occurs when the firm’s properties have not been flooded. This is supported by Fig. 1, which gives insight into the distribution of the 
self-reported absolute direct damage and revenue losses after flooding. More firms experienced revenue losses than direct damage, 
where revenue losses are in most cases larger than physical damage to properties. Non-flooded firms also experienced revenue losses, 
although the flooded firms show a larger variety in their impacts. Flood impacts on firms strongly differ per economic sector [34,35]. 
Fig. 2 shows that there is a large variety of included firms, where most surveyed firms are active in the hospitality sector (e.g., hotels, 
restaurants, campsites). 

2 Dutch laws determine the definition of primary water bodies, all other rivers and lakes are classified as non-primary [67].  
3 Stock exchange policies are a type of insurance where risk is pooled on the international insurance market [32]. 
4 The Calamities Compensation Act (CCA) [Wet Tegemoetkoming Schade bij Rampen, in Dutch] is a compensation scheme from the Dutch gov-

ernment to partially compensate for otherwise uninsurable flood damages. The government compensates firms and households for physical damage 
that is uninsurable, unavoidable, and cannot be recovered elsewhere. 
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2.3. Variables and operationalization 

Table 1 gives an overview of the variables included in this study, differentiated between flooded and non-flooded firms. The two 
main dependent variables of interest are business interruption in days and revenue losses after the flood event in July 2021. Both 
revenue losses and business interruption duration are reported by the firm. However, since not all firms knew their revenue or business 
interruption, some observations are missing in the regression. There is a large heterogeneity between firm sizes when using absolute 
values for revenue losses [13]. To allow for comparison between different firm sizes, we normalized revenue losses by relating these to 

Fig. 1. Distribution of the direct physical damage (blue) and revenue losses (orange) of firms in the sample that reported their revenue losses. 
Separated into firms that were inundated (top) and firms that were not inundated (bottom). (For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version of this article.) 

Fig. 2. Business interruption (left) and revenue losses (right) for different economic sectors for flooded (blue) and non-flooded (red) firms. The 25th 
percentile, median, and 75th percentile are shown by the boxplot and the mean by the red marker. Number of observations at the end of the boxes. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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the reported annual revenue of20195 and defined this as the revenue loss ratio. We decided to relate revenue losses to the 2019 annual 
revenue rather than the 2020 annual revenue, as the COVID-19 pandemic resulted in strong revenue shocks within most economic 
sectors [36]. As the July 2021 flood occurred in a period with less strict COVID-19 regulations in the Netherlands, we believe that 
relating revenue losses to 2019 annual revenue from before the pandemic will give a more realistic representation of firm sizes 
compared to 2020 revenues, during a period with the most strict lockdowns. 

The mean business interruption for flooded firms in our sample is fifteen days and two days for non-flooded firms (Table 1). Fig. 2 
differentiates both business interruption and revenue losses for economic sectors between flooded and non-flooded firms. It becomes 
apparent that both outcome variables follow a right-tailed distribution with also large differences within economic sectors. Looking at 
the median business interruption for flooded firms, the hospitality, health, and manufacturing sectors were the longest out of business. 
A potential explanation for this is the destruction of physical capital required to produce. When considering non-flooded firms, it 
stands out that the agricultural, public, retail, and hospitality sectors also show higher median business interruption compared to the 
other sectors. A potential explanation for this is that these sectors are labor-intensive and/or location-bound. In the first few weeks 
after a flood event, firms may temporarily face employment shortages, as employees may be occupied elsewhere in the recovery after a 
flood event [13]. These employees may need to clean up and repair their own homes or help in their social network after the flood 
event. Additionally, cleaning up the firm’s assets takes longer as well, as these firms only open when the entire property is fully cleaned 
and equipment is replaced. Mean business interruption for the health, hospitality, and manufacturing sectors shows strong deviations 
from the median. From the right section of Fig. 2, it can be observed that sectors with larger median business interruption also face 

Table 1 
Overview of the included variables in this study, based on the business survey (N = 223).  

Variable Description Mean 

Non-flooded Flooded 

Firm impacts 
Business interruption The number of days the firm was unable to operate due to flooding. 15.05 

(21.61) 
2.01 (3.72) 

Revenue loss ratio The ratio between the firm’s reported revenue losses due to flooding and the 2019 annual revenue. 0.14 (0.21) 0.04 (0.10) 
Received 

compensation (%) 
The reported percentage of compensation the firm received at the time of the survey (6–8 months after 
flooding) related to total expected compensation. 

84.98 
(31.44) 

97.19 
(15.89) 

Hazard 
Inundation depth Self-reported inundation depth at the ground floor of the firm’s main property in centimeters. 61.12 

(60.93) 
0 (0) 

Flow velocity Ordinal variable describing flow velocity near the building (1 = average man could easily stand up, 2 
= average man could barely stand, 3 = average man would have been swept away). 

2.02 (0.86) 1.67 (0.92) 

Contamination Dummy variable with the value 1 if the flood water near the firm’s location has been contaminated by 
either oil, chemicals, sewage materials, or other waste, and the value 0 otherwise. 

0.55 (0.50) 0.10 (0.30) 

Access difficulty Days of the firm being difficult to access for either customers, suppliers, or employees. 4.16 (4.00) 1.96 (2.70) 
Exposure 

Employees The absolute number of employees prior to the flood event of July 2021. 15.85 
(42.39) 

20.96 
(43.9) 

Geul River Dummy variable with the value 1 if the firm is located near the Geul River and value 0 otherwise. 0.33 (0.47) 0.10 (0.30) 
Sector Dummy variable with the value 1 if the firm is operating within the respective economic sector from  

Fig. 1 and value 0 otherwise. 
See Fig. 2 See Fig. 2 

Vulnerability 
Building age Years since the firm’s main building has been built. 102.20 

(100.85) 
73.00 
(79.65) 

Supply dependency Days the firm can operate without stock inflow. 35.53 
(29.47) 

33.69 
(29.43) 

Region connection Dummy variable with the value 1 if at least 50 % of the firm’s customers or suppliers are located 
within a 10 km radius around the firm and value 0 otherwise. 

0.23 (0.42) 0.24 (0.43) 

FDM    
Dry-proofing Dummy variable takes the value of 1 if the firm has implemented dry-proofing measures before the 

flood event, with the aim of preventing water from entering the building. Otherwise, it takes the value 
of 0. 

0.36 (0.48) 0.33 (0.47) 

Wet-proofing Dummy variable takes the value of 1 if the firm has implemented wet-proofing measures before the 
flood event, with the aim of reducing flood damage once the water enters the building. Otherwise, it 
takes the value of 0. 

0.59 (0.50) 0.48 (0.50) 

Structural FDM Dummy variable takes the value of 1 if the firm has implemented structural FDM measures as 
precautionary measures before a future flood event. Otherwise, it takes the value of 0. 

0.41 (0.50) 0.33 (0.47) 

Emergency FDM Dummy variable takes the value of 1 if the firm has implemented emergency FDM measures shortly 
before the flood event. Otherwise, it takes the value of 0. 

0.57 (0.50) 0.50 (0.50) 

Note: Standard deviations in parentheses. Mean values and standard deviations are determined based on the survey responses. 

5 The Dutch economy grew by 1.8 % in 2019. Almost all economic sectors experienced similar growth rates between 0.8 % and 4.8 %. The 
financial services sector is an exception with a growth rate of − 1.4 % [68]. Only one respondent of this sector is included in the survey (within the 
broader service sector). 
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larger median revenue losses. The service sector faces the lowest business interruption, as operations are often not bound to a physical 
location. 

We describe flood impacts at the firm level using the risk framework defined by Kron [37], who defines risk as a function of hazard, 
exposure, and vulnerability. All variables used to explain both business interruption duration and revenue losses can be related to one 
of these categories: where hazard includes the severity of the flood event, exposure represents the economic value at risk, and 
vulnerability describes the firm’s susceptibility to flooding [37]. Besides the two dependent variables in this study, Table 1 also de-
scribes all explanatory variables related to the risk framework. The hazard components included are self-reported inundation depth at 
the ground floor of the firm’s main property, self-assessed flow velocity, floodwater contamination, and access difficulty. The variable 
inundation depth is often used through depth-damage curves in physical flood risk models that form the basis for indirect flood loss 
assessments [10]. 

The variable access difficulty has been included as a proxy for supply chain disruptions. Revenues may be harmed when a firm is 
difficult to access for customers, suppliers, or employees, even though the firm is operational already [38]. Fig. 3 gives an overview of 
the days the firm was difficult to reach. More than half of the firms who answered the question and were not inundated remained 
accessible at all times after the flood event. Only for a small fraction, this difficulty to access lasted longer than a week. The difficulty in 
accessing the firm is more evenly distributed for the flooded group. A bit over 20 % of the inundated firms who answered the question 
were difficult to access for more than a week after the flood event. 

With respect to exposure, we control for firm size in the analysis by including the reported number of employees prior to the flood 
event. Next, firm impacts greatly differ between economic sectors, also driven by how capital-intensive these sectors are [20]. For this 
reason, we include sector-fixed effects in the analysis. The final exposure indicator included is whether the firm is located along the 
Geul River or not. Fig. 8 in Appendix I gives a geographical distribution of business interruption of the sample. Although the sample per 
postal code area is relatively small, the figure indicates that average business interruption is the largest along the Geul River. For this 
reason, we control for the firm’s presence along the Geul River, as a proxy for larger disruptions in infrastructure and supply chains in 
this area. Moreover, Endendijk et al. [26] show that household losses are also concentrated along this river. 

To capture firm preparedness and vulnerability, we include FDM measures taken before flooding and building age as indicators that 
affect vulnerability through physical damage. In line with Endendijk et al. [15], we distinguish between two different FDM category6 

distinctions. First, wet-proofing and dry-proofing refer to the goal of the FDM measure. Wet-proofing is aimed at reducing the impact of 
the water once it has already intruded the building (e.g., building with waterproof materials, elevating electrical appliances). 
Dry-proofing refers to measures targeted at keeping the water out of the building (e.g., placing barriers, or elevating the building). De 
Ruig et al. [70] indicate that dry-proofing is generally effective with shallow inundation depths. Another distinction is made between 
emergency FDM and structural FDM. Emergency FDM is taken in advance of a flood event, often after an early warning is given (e.g., 
placing sandbags, moving household contents to higher floors), while structural FDM is applied in advance of a potential flood event (e. 
g., building with waterproof materials, elevating the building). Note that the distinctions between wet- and dry-proofing on the one 
side and emergency FDM and structural FDM are not mutually exclusive (e.g., sandbags are both a dry-proofing and an emergency 
FDM measure). The distinctions are included this way to allow for more generalization to both modeling and policy contexts [15]. 

The variable supply dependency has been added as a vulnerability indicator because firms are more resilient to supply chain 
disruptions if they can operate longer without receiving additional stocks [10]. The variable region connection describes the firm’s 
connection to the region, which may alter the impacts of business interruption on revenue losses. 

The restoration of direct flood damage prolongs business interruption [39] and insurance compensation supports post-disaster 
recovery [40]. For firm impacts, the self-reported percentage of received compensation related to total expected compensation has 
been included, which reflects a received compensation fraction at the time of the survey. Fig. 4 gives an overview of the progress of 
compensation six to eight months after flooding. The amount of still expected compensation corresponds to the firms that are waiting 
for insurance or government payments. However, it may be possible that respondents were overestimating their compensation, where 
in reality these firms are not eligible for this compensation. As a relatively large part of the firms were not insured against flood 
damage, CCA is the largest form of compensation in our sample. 

In Fig. 4, it stands out that the major share of compensation from the inventory insurance has already been paid out six to eight 
months after the flood. The building and consequential loss insurance are slower in their compensation, possibly because these claims 
are more difficult to assess. The two public compensation schemes (the CCA and Disaster Fund7) have both paid out more than half of 
the total expected compensation by firms. According to the survey, firms expect that 61.2 % of their total losses (i.e., physical damage 
and revenue losses) after the flood event will be compensated by either insurance or public compensation schemes, which would be 
substantially lower if not for the public compensation schemes that compensate damage for uninsured firms. This indicates that around 
40 % of all economic losses experienced by companies were not compensated after the flood event; a number that is similar to the 
findings for household loss compensation [26]. However, households received a larger share of their compensation from their home or 
contents insurance, whereas firms relied more on the government’s leniency for compensation of damages after the flood [26]. 

6 For a full overview of all included individual FDM measures within each category, see Endendijk et al. [15].  
7 The Disaster Fund is a non-profit foundation that aims to support victims of disasters that hit the Kingdom of the Netherlands. The Disaster Fund 

accepts private donations to partly compensate residents and firms who experienced severe flood impacts. Severely impacted households received 
€2000 per household. €3.6 million in total has been reserved for businesses operating in civil society, and €3 million in total for “distressing cases” 
for households. The foundation has the discretion to decide who to compensate after a disaster. 
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3. Methodology 

3.1. Estimation strategy 

To estimate the impact of flooding on business interruption duration and revenue losses, two separate regressions have been 
applied using ordinary least squares (OLS). The regression equation for business interruption duration is as follows8: 

Business interruptioni = β0 + β1inundation depthi + β2still expected compensationi + βkX′
i + ai + εi (1)  

where business interruption in days for firm i is the function of the self-reported inundation depth at the ground floor of the property, 
the percentage of total direct damage compensation that is still expected, and additional control variables.9 As flood impacts strongly 
differ between economic sectors [35], sector-fixed effects have been applied (ai). The error term is given by εi.10 Previous studies that 
estimate empirical depth-damage functions for physical damage to properties have found non-linear relationships between inundation 
depth and physical flood damage (e.g. Ref. [15,41]). To identify the potential functional form for the regression, a flexible 
nonparametric model that does not impose a functional form has been applied [42]. For this, inundation depths have been divided into 
bins as dummy variables and are included in a regression on business interruption in Table 4 in Appendix II. The outcomes of this 

Fig. 3. Relative frequency of the number of days of the firm being difficult to access for customers, suppliers, or employees after the flood event, 
separated by the firm being inundated (blue) or not (orange). The number of observations is given on top of the bars. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 4. Total received and still expected compensation from insurance policies (left) and public compensation schemes (right) six to eight months 
after the flood. Number of firms that received or expect compensation are given on top. 

8 Controlling for the different waves of the distribution of the questionnaire did not influence results, and is thus excluded from the regression.  
9 The hazard, exposure, and vulnerability indicators from Table 1 are included in the regression, except access difficulty, connection to the region, 

and FDM. The first two variables are excluded because they describe demand-driven shocks, rather than shocks in capital and labor that affect the 
extent to which a business can operate. FDM is excluded as it is likely to bias the outcomes [15,16].  
10 A Breusch-Pagan test identified heteroskedasticity in the data, for which robust standard errors have been applied [69]. 
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flexible nonparametric regression model are visualized in Fig. 9 in Appendix II. It stands out that inundation depth follows a linear 
relationship with business interruption, thus indicating that we can include inundation depth as a linear function in equation (1). 

The regression equation for revenue losses is as follows: 

Revenue loss ratioi = β0 + β1business interruptioni + β2still expected compensationi + β3access to firmi + β4region dependencyi

+ β5business interruptioni × region dependencyi + βkX′
i + ai + εi (2)  

where the revenue loss ratio for firm i is a function of business interruption duration, the firm’s connection to the region, the number of 
days of the firm being difficult to reach after the flood, still expected insurance compensation, and other covariates.11 Flood events are 
very local events, but indirect impacts may reach far beyond the flood zone, where a disruption in local infrastructure and supply 
chains can occur [3]. This implies that the impact of business interruption changes for firms with different connections to their region. 
To test for this difference, an interaction between business interruption and the region connection dummy has been introduced to the 
regression equation. 

3.2. Propensity score matching (PSM) 

A second goal of this study is to assess the impact of FDM measures taken at the firm level on business interruption duration. 
Endendijk et al. [15] show that estimating the effect of FDM measures using an OLS-regression biases outcomes, as individuals who 
perceive higher flood risk are more likely to implement FDM measures. A comparison between the group that has applied FDM 
measures (i.e., treatment group) and the group that has not (i.e., control group) will lead to an underestimation of the true effect, as 
these groups are different in their background characteristics prior to flooding.12 The same endogeneity problem is likely to occur with 
businesses. Using household survey data, Endendijk et al. [15] overcome this selection bias by applying prior flood experience as an 
instrumental variable, a variable that is not available in our dataset. Hudson et al. [16] and Sairam et al. [17] overcome this selection 
bias through propensity score matching (PSM). 

To identify the impact of FDM measures on business interruption duration, PSM has also been applied in this study. Each obser-
vation in the treatment group is matched with a control observation that is most similar based on their background characteristics that 
influence both flood damage and FDM uptake, such as hazard indicators, economic sector, and ownership of the firm’s building. This 
matching process results in treatment and control groups that are similar in terms of expected flood risk, overcoming the problem of 
endogeneity [43]. First, a logistic regression is applied to assign all observations a propensity score, which gives the predicted 
probability of an observation being in the control group based on all included confounding variables [44]. Each treatment observation 
is matched with one or more control observations based on similar propensity scores, which allows for unbiased comparison between 
both groups. 

The matching process uses firm characteristics that drive FDM uptake. The treatment and control groups are matched on all the 
included variables in Table 2. Hazard indicators are included because individuals who perceive higher flood severity are more likely to 
adapt [45]. The included exposure indicators are the firm’s number of employees, the economic sector, and the location near the Geul 
River. Larger firms may have more financial capacity to adapt before a flood event and these intentions and capabilities to adapt may 
also differ between economic sectors [14,46]. The vulnerability indicators are building age, supply dependency, and received 
compensation. Newer buildings may be more adapted in contrast to older buildings [47]. FDM measures can help firms that rely on 
their suppliers to be accessible after flooding, which is why supply dependency is also included in the matching process. Finally, there 
is mixed evidence about the extent of moral hazard occurring with respect to adaptation and flood risk [48–54]. Hence, we also include 
received compensation as a driver of FDM uptake. 

There are three main assumptions when applying PSM. The first assumption is unconfoundedness, which means that all variables 
that could influence both the uptake of FDM measures and business interruption are included in the matching process [55]. The next 
assumption is balancing, which means that the treated and control groups should be balanced after matching so that both groups are 
comparable. Table 5 in Appendix III shows the outcomes of the balancing of covariates for each type of FDM. It stands out that the 
balancing for the inundation depth variable is somewhat uneven for both groups. This means that the selection bias is still partially 
present, where businesses with higher flood hazard were more likely to take adaptation actions. The outcomes of PSM should, 
therefore, be interpreted with caution. The final assumption is overlap, which means that there should be sufficient overlap between the 
propensity score distributions of treatment and control. To make sure this assumption is satisfied, matching is supplied with common 
support, where control observations are only matched if they lie within the upper and lower bound of the propensity scores of the 
treatment group [55]. Limitations of PSM are that the separate effect of all confounding variables cannot be estimated. For this reason, 
we apply PSM in addition to a regression in OLS. A second downside is that PSM may lead to a loss of sample size and statistical power, 
due to larger uncertainty when estimating propensity scores [56].13 

Finally, the outcomes of PSM can be sensitive to the choice of the matching algorithm [55]. To generate more robust results, we 
apply multiple matching methods: stratification matching, kernel matching, radius matching, and nearest-neighbor matching [55]. 

11 The included covariates from Table 1 are the Geul River dummy, supply dependency, employees, and economic sectors. The other covariates are 
included as they influence business interruption losses through their physical impact on business interruption duration.  
12 For further explanation of this selection bias, see Endendijk et al. [15].  
13 Matching has been applied using common support and with a maximum of five replacements. Standard errors are bootstrapped. 
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Nearest-neighbor matches control and treatment based on the most similar propensity score. Radius matching matches the treatment 
observation with all control observations within a specified bandwidth.14 Kernel matching matches a treatment observation with all 
observations in the control group, but gives a larger weight to the more similar propensity scores. Finally, stratification matching 
divides both groups into blocks. Each treatment observation within a block is compared with all control observations in the same block. 
A main disadvantage of stratification matching is that each block requires a sufficient number of observations, which makes estimates 
more uncertain compared to other matching methods when using small sample sizes [57]. For a more detailed description of the 
different matching methods, see Caliendo & Kopeinig [55]. 

4. Results 

4.1. Business interruption 

The models in Table 2 explain the variation in business interruption duration between firms. Model 1 includes two variables that 
have similar significant effects throughout all other Models: self-reported inundation depth and received compensation. It stands out 
that the coefficient for inundation depth is similar and significant throughout all models in Table 2, where one additional centimeter of 
inundation depth in the building is associated with 0.14–0.18 additional days (i.e., 4 h) of business interruption. This effect can be 

Table 2 
Fixed effects regression with business interruption in days as the dependent variable.  

Variables (1) (2) (3) (4) (5) (6) 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Inundation depth 0.168a 0.166a 0.138a 0.148a 0.178a 0.148a 

(0.026) (0.026) (0.029) (0.032) (0.029) (0.032) 
Received compensation (%) − 0.118b − 0.129b − 0.110b − 0.100 − 0.133b − 0.102c 

(0.054) (0.054) (0.050) (0.061) (0.063) (0.061) 
Flow velocity   1.247 1.062  1.345   

(1.051) (0.999)  (1.112) 
Contamination   4.613c 6.183c  5.497c   

(2.673) (3.264)  (3.185) 
Employees     − 0.009 − 0.010     

(0.012) (0.014) 
Building age     − 0.014 − 0.012     

(0.013) (0.014) 
Supply dependency     − 0.015 − 0.011     

(0.041) (0.043) 
Geul River 7.359a 5.471c 5.113c 4.034 4.400 3.983 

(2.799) (3.018) (2.998) (3.070) (3.162) (3.136) 
Sector 

Service  − 0.612 0.002 1.020 0.060 1.169  
(2.233) (2.746) (2.758) (2.228) (2.763) 

Manufacturing  4.427 7.022b 6.720b 3.698 6.784b  

(2.681) (2.906) (3.101) (3.018) (3.234) 
Hospitality  7.128b 8.501a 8.400b 7.368b 9.105b  

(2.929) (3.198) (3.839) (3.646) (3.992) 
Retail  1.950 3.367 5.012c 2.610 4.478  

(2.411) (2.773) (2.864) (2.454) (2.925) 
Public  0.692 2.056 1.769 0.637 2.277  

(3.271) (3.331) (3.707) (3.700) (3.802) 
Health  8.638c 10.036c 11.329c 9.669c 11.311c  

(5.028) (5.358) (5.813) (5.533) (5.876) 
Constant 12.518b 10.740b 4.816 4.348 13.488b 5.667 

(5.348) (5.024) (5.325) (6.909) (6.478) (6.792)  

Observations 177 177 170 147 153 147 
Adjusted R-squared 0.419 0.459 0.473 0.510 0.498 0.514 

Robust standard errors in parentheses. 
Note: Model 1 gives equation (1) excluding covariates and sector-fixed effects. Model 2 adds sector-fixed effects. Model 3 adds hazard-related 
covariates. Model 4 uses only the same selection of observations as Model 6. Model 5 uses all available observations again and adds vulnerability- 
related covariates to Model 2. Model 6 is the full model with all relevant control variables. 

a p < 0.01. 
b p < 0.05. 
c p < 0.1. 

14 A bandwidth of 0.05 is used in this study. Using smaller and larger bandwidths gives similar outcomes (details not shown here). 
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explained due to the period it takes for the firm’s property to dry and be cleaned [58]. Another variable that has a similar and sig-
nificant coefficient throughout most models is the received compensation after the flood event. One additional percentage point of 
received damage compensation (compared to total expected compensation) six to eight months after the flood event is associated with 
0.10–0.13 days fewer business interruption (3 h). Firms that experienced physical flood damage need time to repair these damages to 
start business again. The longer damage compensation has not been received, the more difficult it is for the firm to start reconstruction 
and resume business. Additionally, if it is clear that the firm will not receive any additional compensation, the firm will take other 
actions to resume business again, instead of waiting for potential future compensation. The final included variable in Model 1 is the 
location dummy for a firm located near the Geul River, where the most economic damage has been observed [28]. The Geul flows 
through a relatively small V-shaped valley with rapid response to upstream precipitation. For this reason, residents along the Geul 
River often had short warning times before the flood occurred, if they were warned at all [26]. The area along the Geul River faced the 
most disruption in local networks and destruction of infrastructure, which led to longer business interruption, even if the firm itself did 
not face any water intrusion. This becomes apparent in Models 1–3, where firms located along the Geul River on average have five to 
seven days of additional business interruption compared to firms located in other areas. The Geul River dummy loses its significance 
and becomes smaller the more control variables are added to the model, which indicates that these newly added covariates explain 
some of the variation in business interruption duration previously captured by the dummy for the Geul River, which represents the area 
with the largest disruptions [28]. 

In Model 2, sector-fixed effects are added to control for different interruption durations between economic sectors. The agricultural 
sector functions as the reference category for these sector dummies. The coefficients and significance of the variables are mostly similar 
compared to Model 1 and the fit of the model improves by adding sector-fixed effects. It stands out that the coefficients for the 
hospitality and health sectors are positive and significant. This implies that these sectors face longer business interruption compared to 
firms in the agricultural sector, which is also shown in Fig. 2. Model 3 includes additional hazard indicators. It is found that self- 
assessed flow velocity does not significantly impact business interruption, while water contamination does. It appears that several 
observations are lost after adding additional covariates in Models 5 and 6. The reason for this is that not all respondents answered 
questions about these added variables. To check if this missingness is random, we run Model 4 using the same specification as Model 3 
with only the observations where all outcome variables are available. It can be concluded that missing values for some variables are 
random, as the signs of the variables in Models 3 and 4 are of similar size, although the received compensation variable is no longer 
significant in the model with the lower number of observations. Compared to Model 2, Model 5 includes the firm’s number of em-
ployees, the age of the building, and the period the firm can operate without stocks. None of these firm characteristics significantly 
impact business interruption after a flood event. Model 6 includes all covariates, which leads to similar results as found in the previous 
models, except the Geul River variable and a few of the sector variables. Overall, the models in Table 2 perform relatively well. Be-
tween 41.9 % and 51.4 % of the variation of business interruption duration has been explained. 

It is also possible to distinguish an effect between firms that have been directly hit by the flood and firms that experience spillovers 
after the flood event due to the disruption of supply chains and infrastructure. The hazard indicators (inundation depth, flow velocity, 
and water contamination) as well as insurance compensation capture the effect of firms directly hit by the flood. Spillover effects are 
captured by the constant, the sector dummies, and the Geul River dummy, which corresponds to the firms in the most disrupted area. A 
robustness test in Table 6 in Appendix IV 15 confirms that the results on the hazard indicators (i.e., inundation depth, flow velocity, and 
contamination) are not affected by the fact that also non-flooded firms are included in the model. However, the sector variables have 
higher coefficients in Table 5 compared to the findings in Table 2. A potential explanation for this is that the agricultural sector 
functions as the reference category in both models. As observed in Fig. 2, there is little difference in business interruption between the 
flooded and non-flooded firms in the agricultural sector. This difference is larger for other economic sectors, such as manufacturing, 
hospitality, and health. Hence, the differences between sectors become larger when only considering flooded firms. 

4.2. Effect of adaptation measures on business interruption 

PSM is applied in Fig. 5 to estimate the impact of FDM measures taken before the flood event on business interruption. The co-
efficients of several FDM categories have been reported along with the 95%-confidence intervals. We cannot identify any significant 
effects of FDM measures. A potential explanation is that the matching process did not fully overcome the selection bias (Appendix III). 
The group that applied FDM measures still experienced higher water levels, even though some adaptation actions are aimed at 
reducing water levels. The coefficients and confidence intervals for structural adaptation actions are the smallest, but still cannot be 
distinguished from zero. 

A consequence of PSM is that the matching algorithm increases standard errors and that the number of observations in the 
treatment group is reduced [59]. Hence, we cannot distinguish significant effects between FDM measures on business interruption. 
Positive coefficients are most frequently observed for emergency measures, primarily due to the large share of elevating valuable 
possessions in this category. However, placing sandbags has often proved to be ineffective during this flood event, as sandbags were 
either too low or not strong enough to protect the building from floodwater [26]. Consequently, these measures often failed to reduce 

15 A robustness test has been performed by running the same models as in Table 2 with only the directly flooded firms. It stands out that the 
coefficients of the hazard indicators do not differ compared to the same models in Table 2, as flood hazard indicators are uncorrelated with the other 
background variables included in the model. The significant relationship between inundation depth and business interruption remains, despite the 
small number of flooded firms included in the regression. 
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flood damage. Moreover, emergency FDM may be less suitable for PSM based on the matching variables described in Section 3.2, as 
emergency FDM is mostly driven by early warnings, in contrast to the other FDM categories [60]. All in all, significant effects of 
adaptation cannot be identified. To our knowledge, these are the only estimates in the literature that examine the relationship between 

Fig. 5. Coefficients and 95%-confidence intervals using Propensity Score Matching (PSM) to identify the difference in business interruption (days) 
between the group that had FDM measures taken before the flood and the group that had not. 

Table 3 
Regression revenue loss ratio (compared to revenue of 2019).  

Variables (1) (2) (3) (4) (5) 

Model 1 Model 2 Model 3 Model 4 Model 5 

Business interruption 0.006a 0.005a 0.005a 0.007a 0.007a 

(0.001) (0.002) (0.002) (0.002) (0.002) 
Received compensation (%)  − 0.000 − 0.000 0.000 0.000  

(0.001) (0.001) (0.001) (0.001) 
Access difficulty  0.006 0.004 0.008 0.007  

(0.005) (0.005) (0.005) (0.005) 
Geul River  − 0.008 0.036 0.015 0.023  

(0.028) (0.030) (0.023) (0.024) 
Region connection    0.006 0.017    

(0.020) (0.023) 
Business interruption × Region connection    − 0.005a − 0.005b    

(0.002) (0.002) 
Supply dependency     0.001     

(0.000) 
Employees     0.000     

(0.000) 
Sector 

Service   − 0.073b − 0.070b − 0.090b   

(0.033) (0.032) (0.038) 
Manufacturing   − 0.106a − 0.093a − 0.105a   

(0.035) (0.034) (0.038) 
Hospitality   − 0.047 − 0.053 − 0.073c   

(0.042) (0.040) (0.040) 
Retail   − 0.097b − 0.096a − 0.113a   

(0.038) (0.036) (0.039) 
Public   − 0.044 − 0.032 − 0.061   

(0.044) (0.040) (0.043) 
Health   − 0.187a − 0.181a − 0.202a   

(0.056) (0.053) (0.056) 
Constant 0.029a 0.016 0.078b 0.070b 0.062b 

(0.009) (0.010) (0.030) (0.030) (0.030)  

Observations 148 148 148 148 133 
Adjusted R-squared 0.349 0.367 0.448 0.524 0.494 

Robust standard errors in parentheses. 
Note: Model 1 gives the relationship between the revenue loss ratio and business interruption. Model 2 adds the relevant impact and hazard-related 
covariates. Model 3 adds region connection and its interaction with business interruption and model 5 is the full model with all relevant covariates. 

a p < 0.01. 
b p < 0.05. 
c p < 0.1. 
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FDM and business interruption, emphasizing the need for additional observational data. 

4.3. Revenue losses 

Table 3 shows an OLS regression with the firm’s revenue loss ratio as the dependent variable. This loss ratio relates self-reported 
revenue losses after the flood event to the firm’s annual revenue of 2019. Model 1 only captures the relationship between business 
interruption and revenue losses. Model 2 adds received damage compensation, the number of days the firm was difficult to reach for 
customers, employees, or suppliers, and the Geul River dummy. One additional day of business interruption is associated with a 0.5 
percentage point annual revenue loss, ceteris paribus. This significant effect slightly increases to 0.7 percentage points in Models 4 and 
5.16 The difficulty to access firms represents potential supply chain disruptions but does not significantly impact revenue losses. There 
is also no direct effect found of the effect of quick compensation on revenue losses, which means that there only is an indirect effect 
where quick insurance compensation reduces revenue losses through shorter business interruption duration (see Section 4.1),17 18. The 
Geul River dummy is not significant, which implies that revenue losses do not differ between the different flooded regions in Limburg 
when controlling for business interruptions, insurance compensation, and infrastructure disruption. 

Model 3 adds the sector dummies, again with the agricultural sector as the reference category. It stands out that the service, 
manufacturing, retail, and health sectors all have significantly lower revenue losses compared to the agricultural sector, a pattern also 
described in Fig. 2. This implies that the agricultural sector suffered one of the highest revenue losses, which can be explained due to 
the destruction of croplands. Low inundation depths can already cause harvests to fail, especially during summer [61]. Most farms had 
their almost fully grown crops still on the field at the time of the flood. These farms lose the entire harvest of the flooded cropland, 
resulting in the loss of all potential sales from that property. These findings are supported by Fig. 2, where the agricultural sector faced 
relatively short business interruption, but large revenue losses. We cannot distinguish a significant difference between the agricultural 
sector and the hospitality and public sectors, which implies that these sectors also faced large revenue losses. A reason for higher 
revenue losses in the hospitality sector may be that this sector is very location-bound. Restaurants and hotels do not open before their 
entire property is fully cleaned and repaired and their equipment is replaced. In contrast, more footloose sectors, such as services and 
health, may start temporarily operating from non-affected properties, mitigating interruption and revenue losses. Tourism may have 
reduced as well, due to infrastructure disruption and potential safety issues [62]. This way, the firms in the hospitality sector may have 
opened again, but fewer potential customers were in the area. Higher revenue losses in the public sector may be explained by the large 
fraction of sports associations included in this group. Sports accommodations may have been temporarily closed, which may have led 
to missed sponsorships income because of canceled games. 

Model 4 adds a new variable that describes the firm’s connection to the region and Model 5 also includes firm characteristics. The 
firm’s connection to the region is expressed with a variable with the value 1 if more than 50 % of the firm’s customers or suppliers are 
located within a radius of 10 km around the firm. This variable is interacted with business interruption, to show how the impact of 
business interruption on revenue differs between firms based on the connection to their region. This effect has been visualized in Fig. 6. 

The negative and significant coefficient implies that the impact of business interruption is larger for firms with less connection to 
the region compared to firms with a closer connection to the region. All firms experience higher revenue losses the longer business 
interruption lasts. However, firms that have less than 50 % of their customers or suppliers within a 10 km radius face higher revenue 
losses compared to firms with a stronger connection to the region. This difference becomes larger the longer business interruption lasts. 
A potential explanation for this is that customers of firms with weak connection to their region are more likely to seek alternatives 
during the firm being closed. These customers may prefer their new alternative or sign new contracts and will not return after the 
business has opened again, leading to structurally lower revenues. The longer business interruption lasts, the more customers will look 
for alternatives. This may not be true for firms with a strong connection to the region. There may be no alternatives for customers close 
by. Alternatively, stronger local relationships with the firm make customers return after the business has opened again. 

Fig. 7 explores how this role of firm connection to the region differs per economic sector. Within economic sectors, firms with a 
weak connection to the region generally face higher revenue losses compared to firms with a stronger connection to the region. This is 
not the case for the manufacturing and retail sectors, where there are also few observations. The differences within the hospitality 
sector stand out, firms with a weak connection to the region on average face three times higher revenue losses compared to the group 
with a stronger connection. This supports the hypothesis of tourists temporarily staying away from the flooded area, resulting in lower 
demand. Firms in the hospitality sector that are less dependent on tourists may, therefore, experience lower revenue losses. Similar 
differences can be observed within the agricultural and health sectors. Firms with a strong connection to the region in the health sector 
may experience lower revenue losses during business interruption as patients are often connected to one dentist, pharmacy, or doctor 
in the region. Patients are, therefore, less likely to seek alternatives, as they are used to a health care provider. In contrast, firms with 
weaker connections may face higher revenue losses as patients may opt for alternative healthcare providers in the absence of their 
usual facility. An alternative hypothesis for the agricultural, health, and hospitality sectors is that residents in the region support these 

16 Including the squared term of business interruption in the model to accommodate nonlinear effects did not yield a noteworthy correlation, 
suggesting that a linear model is satisfactory.  
17 These direct and indirect effects have also been examined using a mediation regression, where the same results have been found (not reported in 

detail here).  
18 Due to the privacy regulations in the Netherlands, the location of some firms is unknown, as respondents were given the option to withhold their 

addresses. 
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businesses in the recovery process through additional demand or in-kind support. 

5. Discussion 

5.1. Comparison with previous literature 

This study adds knowledge on business interruption duration, losses, and the potential impact of FDM measures following a flood 
event. To our knowledge, only three studies investigated business interruption duration caused by flooding. Yang et al. [12] assess the 
impact of pluvial flooding on business interruption and use a probabilistic approach to determine business interruption. The other 
studies that look into riverine flooding both use the same dataset from the 2013 summer flood event in Germany. Thieken et al. [11] 
described their dataset and found a median business interruption of two weeks, which is similar to our findings for flooded firms in 
Table 1. Sultana et al. [13] seek a relationship between inundation depth and business interruption duration. Using machine learning, 
they identify business interruption to be mainly driven by hazard characteristics, such as inundation depth, duration, and water 
contamination. Similarly, in Table 2 it is observed that both self-reported inundation depth and water contamination are associated 
with longer business interruption. Sultana et al. [13] used a bivariate linear regression to quantify the relationship between inundation 
depth and business interruption. Their model explains only 5 % of the variation in business interruption duration, while our models, 
which include sector-fixed effects and other covariates, explain 42%–51 % of the variation. 

We also examine the role of FDM at the building level in reducing business interruption duration for firms; a relationship which has, 
to our knowledge, not been studied before. Moreover, empirical evidence on the effectiveness of FDM measures for reducing flood 
damage on the asset level is scarce, especially for commercial properties. Including FDM in a regression leads to a positive selection 
bias, as firms who expect higher flood risk are more likely to take FDM measures [15]. Studies on household FDM measures have 
applied an instrumental variable (IV)-regression [15] or PSM [16,17] to overcome this selection bias. Sairam et al. [17] and Hudson 
et al. [16] both report the impact of FDM measures in absolute values, which makes their findings more difficult to compare with ours 
in terms of days. Endendijk et al. [15] find that FDM measures have the potential to reduce economic damage to buildings by 20–29 %. 

Fig. 6. Visualization of the marginal effect of business interruption on revenue losses for firms with low (light blue) and high (dark blue) connection 
to the region. Note: Based on coefficients from Table 3. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the Web version of this article.) 

Fig. 7. Mean revenue loss ratio for firms with weak (light blue) and strong (dark blue) connection to their region, separated per economic sector. 
The number of observations is given on top of the boxes. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the Web version of this article.) 
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Kuhlicke et al. [63] cannot disentangle a relationship between adaptation measures and flood damage for firms. Using PSM, we cannot 
identify any significant impacts of FDM on business interruption. A potential explanation for the lack of significance in our study is that 
we estimate an indirect effect of FDM on business interruption through potentially lower damage to physical capital. Moreover, we 
operate with a relatively small sample size, which results in lower explanatory power, especially when applying PSM. 

Studies that estimate the impact of flooding on firms use several impact indicators, such as changes in capital, labor, productivity, 
profits, or value added. However, these studies often use a time scale longer than one year and cannot identify whether a single firm 
was flooded or not (e.g. Ref. [19–21]). Moreover, these studies are quite coarse in the determination of the flood extent, where a firm is 
classified as flooded when its city or region has been flooded. As a consequence, the average impact of flooding in existing studies 
includes both impacts on flooded firms as well as spillovers to other firms in the same region. We reduce the heterogeneity between 
different firm sizes by relating revenue losses to previous annual revenues, which indicates a stronger relationship between inter-
ruption and losses and improves the fit of the revenue loss model compared to Sultana et al. [13]. Our study is one of the first firm-level 
studies that can estimate the impact of flooding in a region, where the indirect impacts on flooded firms and spillover effects on 
non-flooded firms can be distinguished from each other. We identify direct effects through the hazard and insurance indicators 
included in our models, where indirect effects also occur for nearly flooded firms through their presence in an area where disruption of 
infrastructure occurred. The relatively short timeframe of our study also explains the found negative effect of flooding on revenues, 
similar to what is found in other studies (e.g., Ref. [11–13,25]). In the longer run, firm growth may be positive due to increased demand 
for goods and services for reconstruction in the area, technological advancement because of the replacement of depreciated capital, or 
just macroeconomic growth in general [19]. 

5.2. Research implications 

When interpreting our results, it should be noted that we report on the consequences of a relatively small flood event. For instance, 
the same flood event in the Ahr Valley in Germany or Hurricane Katrina in New Orleans caused much larger economic losses and 
disruptions [30,64]. As a consequence, infrastructure disruption and massive demand for reconstruction prolonged business inter-
ruption duration in these areas. We show an effect of self-reported inundation depth on business interruption duration, but one should 
be cautious when extrapolating this relationship to flood events of a much larger magnitude, where disruptions are larger. In this case, 
besides inundation depth, the total magnitude of economic losses caused by flooding should be considered. 

Another limitation of our study is that it relies on self-reported revenue losses provided by the firms. While this approach is 
commonly used and offers valuable insights, it is important to acknowledge that self-reporting introduces the possibility of bias or 
inaccuracies in our data. Self-reported revenue losses are related to ‘business as usual’, so are an estimation of revenue losses rather 
than an accurate representation of impacts related to a counterfactual. However, this method helps map firm-level flood impacts, 
which gives more detailed flood characteristics and vulnerability indicators than modeled flood extents. Another limitation is that our 
study, which utilizes survey-based regression models, cannot fully examine interactions between economic sectors. Unlike approaches 
such as IO or CGE models, our models cannot capture complex interdependencies and feedback effects that can occur between eco-
nomic sectors in the recovery process. We, therefore, stress that our findings are complementary to the findings from these macro-
economic models (e.g., Ref. [8,10,65]), where especially our findings on business interruption duration may guide the use of recovery 
periods in IO and CGE models. 

Current literature on IO and CGE models often makes strong assumptions about business interruption duration [10]. In most cases, 
these models assume the recovery period after a flood event to last exactly one year, without any empirical calibration [66]. The 
constant and significant coefficient of inundation depth in Table 2 calls for the inclusion of depth-duration functions in IO and CGE 
models. This allows for differentiation in recovery periods between different firms within a flooded region and provides more accuracy 
to these models, which is in contrast to the current approach in these macroeconomic models where different scenarios of business 
interruption duration are assumed for all firms within a flooded region. Moreover, our results show that a majority of flooded firms 
recover within a month (Fig. 1), where there are large outliers to longer business interruption durations. 

As the outcomes of the impact on FDM measures taken at the firm level are quite uncertain, future studies can look more into this 
topic by collecting more observational data after flood events. Additionally, future studies that look into the impact of flooding on firm 
performance would benefit from the inclusion of connections between economic sectors. Some economic sectors are more closely 
connected to each other [10]. This may indicate that disruptions in a closely connected economic sector will lead to larger revenue 
losses. 

6. Conclusion 

As the frequency and intensity of flood events are expected to increase due to climate change, it is useful to understand how 
flooding impacts businesses through interruption of business processes and revenue losses. Previous empirical studies on the impact of 
flooding on firms generally cannot distinguish separate direct effects on flooded firms and spillover effects on non-flooded firms. 
Moreover, flood magnitude and firm adaptation to flooding are often not considered in these existing studies. Therefore, after the flood 
event in the Netherlands in the summer of 2021, we distributed a survey among firms in the flooded area. Using a multivariate 
regression approach, flood characteristics have been found to explain business interruption duration, which resulted in depth-duration 
functions. These functions serve the purpose of reducing reliance on assumptions regarding business interruption duration and 
enabling a more nuanced distinction in the level of business interruption experienced across varying degrees of flood impacts in models 
that capture indirect impacts on firms. Using propensity score matching (PSM), no significant impact of flood damage mitigation 
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(FDM) measures taken at the building level on business interruption has been identified. PSM addresses the problem of endogeneity, 
which is caused by firms that expect higher flood damage being more likely to adopt these measures. 

It is found that one additional centimeter of inundation depth reported by the firms is associated with 4 h of additional business 
interruption, where one day of business interruption costs a firm on average 0.5 % of its annual revenue. A way to support firm 
resilience is by strengthening local networks and customer loyalty. Firms that are more closely connected to their region, face less 
adverse effects from business interruption compared to firms less connected to the region. This difference is likely to be caused by 
customers returning to firms with a stronger connection to the region, where customers of other firms are more likely to seek sub-
stitutes. Next, commercial flood insurance uptake is relatively low in the Netherlands. However, it is found that quick loss compen-
sation indirectly reduces revenue losses by shortening the duration of business interruption, calling for higher insurance uptake and 
efficient and streamlined insurance and government damage compensation. A way to accomplish this is by stimulating insurance 
uptake and establishing a central point for households and firms to claim their flood damage compensation, which can be distributed 
among different insurers at a later stage to help build more resilience to flooding. 
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Appendix I. Geographical distribution of business interruption  
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Fig. 8. Average business interruption per postal code area (N = 129) .  

Appendix II. Flexible nonparametric model of inundation depth on business interruption  

Table 4 
Flexible nonparametric regression model for business inter-
ruption and inundation depth divided into bins using the same 
covariates as Model 6 in Table 2.  

Variables (6) 

Model 6 

Inundation depth (1–20 cm) 2.024 
(4.880) 

Inundation depth (21–50 cm) 3.041 
(3.952) 

Inundation depth (51–100 cm) 11.105** 
(5.161) 

(continued on next page) 
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Table 4 (continued ) 

Variables (6) 

Model 6 

Inundation depth (101–200 cm) 23.926*** 
(6.452) 

Inundation depth (201–400 cm) 35.470*** 
(5.302) 

Received compensation (%) − 0.108* 
(0.060) 

Flow velocity 1.251 
(1.113) 

Contamination 5.496* 
(3.258) 

Employees − 0.011 
(0.014) 

Building age − 0.013 
(0.013) 

Supply dependency − 0.012 
(0.042) 

Geul River 3.657 
(3.199) 

Sector  

Service 1.275 
(3.020) 

Manufacturing 7.076** 
(3.346) 

Hospitality 9.149** 
(4.057) 

Retail 4.534 
(3.036) 

Public 1.710 
(4.255) 

Health 11.883** 
(5.611) 

Constant 6.624 
(7.071)  

Observations 147 
R-squared 0.518 

Robust standard errors in parentheses. 
***p < 0.01, **p < 0.05, *p < 0.1.  

Fig. 9. Visualization of the nonparametric regression model. Note: based on the coefficients for inundation depth in Table 4, keeping all other 
variables constant. 
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Appendix III. PSM – Balancing of covariates  

Table 5 
Control and treatment groups for each category of FDM after balancing of covariates.  

Variable Wet-proofing Dry-proofing Structural Emergency 

Control (N 
= 113) 

Treatment (N 
= 110) 

Control (N 
= 152) 

Treatment (N 
= 71) 

Control (N 
= 148) 

Treatment (N 
= 75) 

Control (N 
= 138) 

Treatment (N 
= 85) 

Inundation depth 16.631 
(34.007) 

38.943 
(60.816) 

30.009 
(53.603) 

26.877 
(48.236) 

25.284 
(49.832) 

34.588 
(54.147) 

25.22 
(44.046) 

33.584 
(59.950) 

Received 
compensation 
(%) 

95.602 
(18.810) 

90.144 
(26.750) 

94.092 
(21.331) 

90.378 
(26.702) 

94.593 
(20.619) 

89.588 
(27.396) 

94.11 
(21.747) 

90.961 
(25.348) 

Flow velocity 1.68 (0.857) 1.968 (0.928) 1.759 
(0.906) 

1.984 (0.896) 1.709 
(0.812) 

2.045 (1.007) 1.802 
(0.980) 

1.892 (0.804) 

Contamination 0.212 
(0.411) 

0.318 (0.468) 0.23 (0.422) 0.338 (0.476) 0.236 
(0.426) 

0.32 (0.470) 0.232 
(0.424) 

0.318 (0.468) 

Employees 15.379 
(33.290) 

22.019 
(49.621) 

16.89 
(39.075) 

23.079 
(49.546) 

16.094 
(38.871) 

23.817 
(48.603) 

14.758 
(31.738) 

25.063 
(54.895) 

Building age 70.291 
(70.612) 

91.791 
(99.285) 

76.08 
(79.136) 

93.408 
(102.151) 

77.339 
(82.218) 

90.453 
(97.360) 

75.73 
(81.324) 

91.012 
(96.477) 

Supply dependency 1.407 
(2.935) 

2.869 (3.295) 1.79 (3.172) 2.851 (3.146) 1.701 
(3.121) 

2.972 (3.192) 1.54 (2.916) 3.083 (3.409) 

Sector 
Service 0.159 

(0.368) 
0.136 (0.345) 0.158 

(0.366) 
0.127 (0.335) 0.169 

(0.376) 
0.107 (0.311) 0.138 

(0.346) 
0.165 (0.373) 

Manufacturing 0.124 
(0.331) 

0.173 (0.380) 0.178 
(0.383) 

0.085 (0.280) 0.142 
(0.350) 

0.16 (0.369) 0.174 
(0.380) 

0.106 (0.310) 

Hospitality 0.142 
(0.350) 

0.264 (0.443) 0.171 
(0.378) 

0.268 (0.446) 0.149 
(0.357) 

0.307 (0.464) 0.159 
(0.367) 

0.271 (0.447) 

Retail 0.097 
(0.298) 

0.091 (0.289) 0.092 
(0.290) 

0.099 (0.300) 0.095 
(0.294) 

0.093 (0.293) 0.101 
(0.303) 

0.082 (0.277) 

Public 0.133 
(0.341) 

0.127 (0.335) 0.112 
(0.316) 

0.169 (0.377) 0.128 
(0.336) 

0.133 (0.342) 0.13 (0.338) 0.129 (0.338) 

Health 0.133 
(0.341) 

0.055 (0.228) 0.105 
(0.308) 

0.07 (0.258) 0.115 
(0.320) 

0.053 (0.226) 0.109 
(0.312) 

0.071 (0.258) 

Primary 0.142 
(0.350) 

0.155 (0.363) 0.132 
(0.339) 

0.183 (0.390) 0.149 
(0.357) 

0.147 (0.356) 0.13 (0.338) 0.176 (0.383)  

Appendix IV. Robustness test with only flooded firms  

Table 6 
Fixed effects regression with business interruption in days as the dependent variable with only flooded firms  

Variables (1) (2) (3) (4) (5) (6) 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Inundation depth 0.169*** 0.169*** 0.136*** 0.156*** 0.178*** 0.151*** 
(0.031) (0.031) (0.037) (0.042) (0.037) (0.043) 

Received compensation (%) − 0.136* − 0.145** − 0.129** − 0.106 − 0.137* − 0.111 
(0.070) (0.067) (0.063) (0.073) (0.074) (0.073) 

Flow velocity   1.777 0.652  1.435   
(2.710) (2.895)  (3.761) 

Contamination   6.044 7.967  6.520   
(3.777) (4.878)  (5.048) 

Employees     − 0.019 − 0.022     
(0.028) (0.041) 

Building age     − 0.028 − 0.020     
(0.025) (0.028) 

Supply dependency     − 0.010 − 0.000     
(0.094) (0.096) 

Geul River 11.217** 9.647* 9.098* 6.873 7.470 6.969 
(4.467) (5.006) (4.941) (5.242) (5.496) (5.530) 

Sector        
− 1.980 0.392 5.200 2.978 5.388 

(continued on next page) 
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Table 6 (continued ) 

Variables (1) (2) (3) (4) (5) (6) 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Service  (5.625) (6.535) (6.883) (6.518) (7.569)  
11.577 15.405** 17.506** 13.719 18.040* 

Manufacturing  (7.202) (7.443) (7.989) (8.572) (9.265)  
14.941*** 17.008*** 19.344*** 18.897*** 20.675*** 

Hospitality  (5.230) (5.536) (6.871) (6.866) (7.179)  
− 0.974 − 0.068 6.037 5.714 6.147 

Retail  (6.120) (6.779) (8.467) (6.314) (7.700)  
2.848 5.357 5.525 2.907 5.647 

Public  (4.719) (5.222) (6.665) (6.154) (6.844)  
17.336** 18.772** 23.667** 21.338** 22.713** 

Health  (7.843) (7.974) (9.452) (9.762) (9.774)  

Constant 12.612* 5.768 − 2.399 − 5.088 6.701 − 3.198 
(6.948) (5.870) (7.440) (9.745) (7.704) (9.592)  

Observations 83 83 83 66 66 66 
Adjusted R-squared 0.348 0.464 0.484 0.496 0.486 0.502 

Robust standard errors in parentheses. 
***p < 0.01, **p < 0.05, *p < 0.1. 
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